

Access to OE DataCollections

Víctor Navas, Toni Segarra, David Altadill Observatori de l'Ebre (OE)

Training for Partners #4, 12-13 September 2023, London

What was written in the proposal?

• Bottomside Thickness

<u>Models</u> for the thickness and shape of the bottom-side of the F2 layer, B0 and B1 respectively, for <u>quiet conditions</u>. The models have been validated and they are used by the IRI model as the recommended option. (Altadill et al. 2009; Bilitza et al. 2014).

B0B1_qModel (<u>https://esc.pithia.eu/data-collections/DataCollection_OE_B0B1_qModel/</u>)

• F-peak height

<u>Model</u> for the density peak height, hmF2, for <u>quiet conditions</u>. The model has been validated and used by the IRI as the recommended option. (Altadill et al. 2013; Bilitza et al. 2017).

hmF2_qModel (<u>https://esc.pithia.eu/data-collections/DataCollection_hmF2_qModel/</u>)

• Equatorial Plasma Detection

Equatorial Plasma Detection <u>method</u> (Blanch et al., 2018) is able to identify the occurrence of Equatorial Plasma Bubbles (EPBs) with data gathered from receivers of Global Navigation Satellite System (GNSS).

EPB_detectionTool (https://esc.pithia.eu/data-collections/DataCollection_OE_EPB_detectionTool/)

HOME SEARCH & BROWSE -

Home / Browse Metadata / Data Collection-related Metadata / Data Collections / BOB1_qModel

B0B1_qModel

The B0B1 Model calculates the thickness B0 (km) and shape B1 (dimensionless) parameters of the F layer under quiet conditions on the basis of climatological models. By using the predicted smoothed sunspot number and the newest IGRF coefficients at any location distributed along the used range of latitudes (70N–70S). Model parameters can be computed either to reproduce already observed values or to perform predictions until December 2029.

Interact

Interaction Method	Description	Data Format	Link
Direct Link to Data Collection	The B0B1 Model calculates the thickness B0 (km) and shape B1 (dimensionless) parameters of the F layer under quiet conditions on the basis of climatological models.	application/json (click the link to show information on this ontology term)	<u>Open B0B1_qModel AP</u> <u>in new tab</u> ^৫
ΑΡΙ	The B0B1 Model calculates the thickness B0 (km) and shape B1 (dimensionless) parameters of the F layer under quiet conditions on the basis of climatological models.	N/A	<u>Open API Interface in</u> <u>new tab</u>

Identifier Properties

Local ID	DataCollection_OE_B0B1_q Model
Namespace	oe
Version	1
Created	Thursday 20th April 2023, 12:00:00
Last Modified	Thursday 20th April 2023, 12:00:00

Login

Two access methods:

- external API
- integrated API

External API

B0B1qModel API

/thickness APl/openapl.json

B0B1 qModel API 🚀

Endpoints

You will be able to run the BOB1 guiet Model (BOB1gModel) to obtain B0 and B1 coefficients.

Generate csv files

Time series file for a given year: month, hour, latitude, longitude, 80 (km), 81 (dimensionless)

Heatmap snapshot file for a given year, month an hour at a specified spatial window: month, hour, latitude, longitude, B0 (km), B1 (dimensionless)

Generate plots of B0 (km)

Time series plot for a given year Heatmap snapshot Heatmap daily animation

Notes

- · Values of B1 are provided in data files but they are not shown in the plots.
- · Model validity: The model is able to perform predictions until 2030 (not included).
- . The International Geomagnetic Reference Field (IGRF) used in this model is valid until 2025 (included). Note that those predictions for years between 2028 and 2029 (both included) can be computed but IGRF values may be of reduced accuracy.

Time series file B0B1qModel Returns a csv file for the monthly averages of the thickness model coefficients (B0,B1) at different hours	^
GET /B0B1qModel_time_series_file/ B0B1qModel Time Series File Response	\sim
Time series plot B0B1qModel Returns a plot for the monthly averages of the thickness model coefficient B0 (km)s at different hours	^
GET /B0B1qModel_time_series_plot/ B0B1qModel Time Series Plot	\sim
Heatmap snapshot file B0B1qModel Returns a csv file for different latitudes and longitudes of the monthly averaged Thiokness model coefficients (80,81) at an hour for a certain spatial time window	^
GET /B0B1qModel_map_file/ B0B1qModel Map File	\sim
Heatmap snapshot B0B1qModel Returns a heatmap of the monthly averaged Thickness model B0 coefficient (km) at an hour for a certain spatial time window	^
GET /B0B1qModel_map/ B0B1qModel Map File	\sim
Heatmap daily animation B0B1qModel Returns an hourly animation of the monthly averaged monthly averaged Thickness model B0 coefficient (km) for a certain spatial time window. The execution may take a while 🗿. You can go for a coffee if you want 😇.	^

PITHIA-NRF

e-Science Centre

HOME SEARCH & BROWSE -

Integrated API

Home / Present

Interact with Data Collection via API

8081_gModel

-

B0B1qModel API

8081 qModel API 💋

Endpoints

You will be able to run the BOB1 guiet Model (BOB1gModel) of to obtain B0 and B1 coefficients.

Generate csy files

- Time series file for a given year: month, hour, latitude, longitude, B0 (km), B1 (dimensionless)
- Heatmap snapshot file for a given year, month an hour at a specified spatial window: month, hour, latitude, longitude, 80 (km), 81 (dimensionless)

Generate plots of B0 (km)

- Time series plot for a given year
- Heatmap snapshot
- Heatmap daily animation

Notes

· Values of B1 are provided in data files but they are not shown in the plots.

- · Model validity: The model is able to perform predictions until 2030 (not included).
- The International Geomegnetic Reference Field (IGRF) used in this model is valid until 2025 (included). Note that those predictions for years between 2026 and 2029 (both included) can be computed but IGRF values may be of reduced accuracy.

Search endpoint by nan

/Time series file B0B1aModel

Returns a csv file for the monthly averages of the thickness model coefficients (80,81) at different hours

Show/hide details

/Time series plot B0B1qModel Returns a plot for the monthly averages of the thickness model coefficient B0 (km)s at different hours

Show/hide details

/Heatmap snapshot file B0B1gModel Returns a cav file for different latitudes and longitudes of the monthly averaged Thickness model coefficients (80,81) at an hour for a certain spatial time window

Show/hide details

/Heatmap snapshot B0B1gModel Returns a heatmap of the monthly averaged Thickness model 80 coefficient (km) at an hour for a certain spatial time window

Show/hide details

/Heatmap daily animation B0B1qModel

Returns an hourly animation of the monthly averaged monthly averaged Thickness model 80 coefficient (km) for a certain spatial time window. The execution may take a while 🕗. You can go for a coffee if you want 😇.

Show/hide details

 \sim

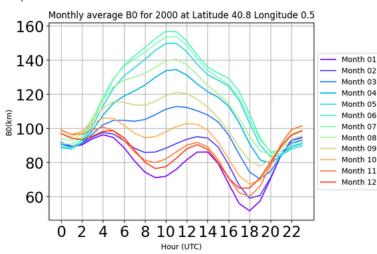
Login

/Time series plot B0B1qModel

Returns a plot for the monthly averages of the thickness model coefficient B0 (km)s at different hours

Show/hide details

Inputs


Cancel

Name Description

year integer (query)	Insert a year in range [1900,2030)	
	2000	
latitude number (query)	Insert a latitude in range [-70,+70]	
	40.8	
_	elnsert a longitude in range [-180,+180]	
number (query)	0.5	

Run /B0B1QMODEL_TIME_SERIES_PLOT/ Clear Outputs

Outputs

Model for the thickness (B0) and shape (B1) of the bottom-side of the F2 layer for **quiet conditions**.

Input: date, latitude and longitude **Output**:

- Time series
 - csv file
 - Timeseries plot

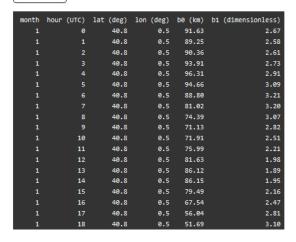
/Time series file B0B1qModel

Returns a csv file for the monthly averages of the thickness model coefficients (B0,B1) at different hours

Show/hide details

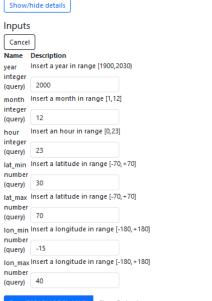
Inputs

Cancel

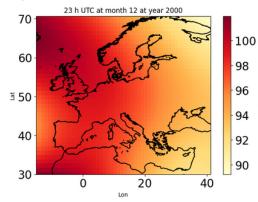

Name Description

ear nteger	Insert a year in range [1900,2030)
query)	2000
atitude umber	Insert a latitude in range [-70,+70]
query)	40.8
ongitude iumber	Insert a longitude in range [-180,+180]
query)	0.5

Run /B0B1QMODEL_TIME_SERIES_FILE/ Clear Outputs


Outputs

Download



<u>/Heatmap snapshot BOB1qModel</u> Returns a heatmap of the monthly averaged Thickness model B0 coefficient (km) at an h

Run /B0B1QMODEL_MAP/ Clear Outputs

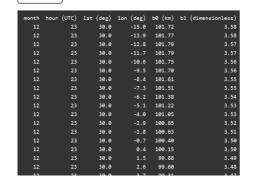
Outputs

BO

Input: date, latitude and longitude **Output**:

- Maps
 - csv file
 - Heatmap snapshot

Input: date, latitude and longitude **Output**:


> Heatmap daily animation (NOT SHOWN)

/Heatmap snapshot file B0B1qModel

Returns a csv file for different latitudes and longitudes of the monthly averaged

Show/	hide details
Inputs	
Cancel	
Name	Description
year	Insert a year in range [1900,2030)
integer (query)	2000
month	Insert a month in range [1,12]
integer (query)	12
hour	Insert an hour in range [0,23]
integer (query)	23
lat_min number	Insert a latitude in range [-70, +70]
(query)	30
lat_max number	Insert a latitude in range [-70,+70]
(query)	70
lon_min number	Insert a longitude in range [-180,+180]
(query)	-15
lon_max	Insert a longitude in range [-180,+180]
(query)	40
Run /E	0B1QMODEL_MAP_FILE/ Clear Outputs

F-peak height (hmF2_qModel)

- Model for the density peak height, hmF2, for quiet conditions.
- ✤ Also, two access methods, external and integrated API

Outputs of the model

- Timeseries
 - csv file
 - Timeseries plot
- Heatmap snapshots
 - csv file
 - Plot maps
- Daily heatmap animation

HOME SEARCH & BROWSE *

Home / Present

Interact with Data Collection via API

hmF2_qModel

hmF2 qModel API

hmF2 qModel API 💋

Endpoints

You will be able to run the hmF2 aModel at to obtain the height (in km) where the electron density peak is located in the F2 layer.

Generate csv files

- Time series file: month, hour, peak_height
- Heatmap snapshot file
 Generate plots
- Time series plot: month, hour, peak_height, latitude, longitude
- Heatmap snapshot
- Heatmap daily animation

Notes

- Model validity: The model is able to perform predictions until 2030 (not included).
- The International Geomagnetic Reference Field (IGRF) used in this model is valid until 2025 (included). Note that those predictions for years between 2026 and 2029 (both
 included) can be computed but IGRF values may be of reduced accuracy.

Search endpoint by name

<u>/Time series file</u> Returns a csv file for the monthly averages of the Fpeak model at different hours

Show/hide details

<u>/Time series plot</u> Returns a plot for the monthly averages of the Fpeak model at different hours

Show/hide details

/Heatmap snapshot file Returns a csv file for different latitudes and longitudes of the monthly averaged Fpeak model at an hour for a certain spatial time window

Show/hide details

<u>/Heatmap snapshot</u> Returns a heatmap of the monthly averaged Fpeak model at an hour for a certain spatial time window

Show/hide details

/Heatmap daily animation Returns an hourly animation of the monthly averaged Fpeak model for a certain spatial time window. The execution may take a while 🖉. You can go for a coffee if you want 😇.

Show/hide details

F-peak height (hmF2_qModel)

/Time series plot

Returns a plot for the monthly averages of the Fpeak model at different hours

Characteristics	de trata-	all a secolar
Snow	/nide	details

Inputs

Cancel

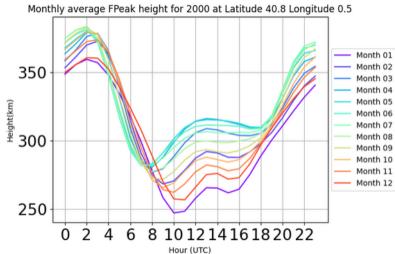
Name Description

Insert a year in range [1900,2030) vear

integer	
(query)	2000

Insert a latitude in range [-70,+70] latitude

num	ber


40.8 (query)

longitudeInsert a longitude in range [-180,+180]

number		
(query)	0.5	

Run /HMF2 TIME SERIES PLOT/ Clear Outputs

Outputs

Input: date, latitude and longitude Output:

- Time series •
 - csv file •
 - **Timeseries plot** ٠

/Time series file

Returns a csv file for the monthly averages of the Fpeak model at different hours

Show/hide details

Inputs

Cancel]
Name	Description
year integer	Insert a year in range [1900,2030)
(query)	2000
latitude number	Insert a latitude in range [-70,+70]
(query)	40.8
longitude number	Insert a longitude in range [-180,+180]
(query)	0.5

Run /HMF2 TIME SERIES FILE/ Clear Outputs

Outputs

Download

month	hour (UTC)	lat (deg)	lon (deg)	fpeak (km)
1	0	40.8	0.5	348.68
1	1	40.8	0.5	355.79
1	2	40.8	0.5	359.57
1	3	40.8	0.5	357.09
1	4	40.8	0.5	348.01
1	5	40.8	0.5	334.44
1	6	40.8	0.5	318.13
1	7	40.8	0.5	299.12
1	8	40.8	0.5	277.90
1	9	40.8	0.5	258.34
1	10	40.8	0.5	247.14

Show/hide details

30

F-peak height (hmF2_qModel)

/Heatmap snapshot Returns a heatmap of the monthly averaged Fpeak model at an hour for a certain spatial time window

Input		
Cance		
Name	 Description	
year	Insert a year in range (1900,2030)	
integer		
(query)	2000	
month	Insert a month in range [1,12]	
integer (query)	12	
hour	Insert an hour in range (0,23)	
integer (query)	23	
	Insert a latitude in range [-70,+70]	
number (query)	90 E	
lat_max	Insert a latitude in range [-70, +70]	
number	70	
(query)		
	Insert a longitude in range (-180, +180)	
number (query)	-15	
2010/2010	insert a longitude in range [-180,+180]	
on_max number		
(guery)	40	
Run // Outpi	IMF2_MAP/ Clear Outputs	
70	23 h UT for month 12 at year 2000	380
	100	
60	K Stor	-370
∃ 50	UZ3	360 m
	5 .0 12	NE (km)
40	Caller	350

20

340

40

Input: date, latitude and longitude **Output**:

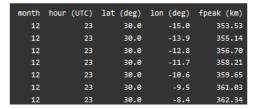
- Maps
 - csv file
 - Heatmap snapshot

Input: date, latitude and longitude **Output**:

 Heatmap daily animation (NOT SHOWN)

/Heatmap snapshot file

Returns a csv file for different latitudes and longitudes of the


Show/hide details

Inputs

Name	Description
year	Insert a year in range [1900,2030)
integer (query)	2000
month integer	Insert a month in range [1,12]
(query)	12
hour	Insert an hour in range [0,23]
integer (query)	23
-	Insert a latitude in range [-70,+70]
number (query)	30
-	Insert a latitude in range [-70,+70]
number (query)	70
-	Insert a longitude in range [-180,+180
number (query)	-15
-	Insert a longitude in range [-180,+180
number (query)	40

Outputs

Download

Equatorial Plasma Detection (EPB_detectionTool)

- Equatorial Plasma Detection method is able to identify the occurrence of Equatorial Plasma Bubbles (EPBs) with data gathered from receivers of Global Navigation Satellite System (GNSS).
- Also, two access methods, external and integrated API

PITHIA-NRF e-Sidence Centre

Login

Interact with Data Collection via API

SP8_detectionTool

Bubbles API

Bubbles API 💋

Your will be able to latently equatorial glasma degletions (Rubbled; by means of the <u>descention tool⁹⁷</u>, Petential bubbles include dgnReam bubbles according to the different thresholds and conditions expected in the <u>bubble descention tool⁹⁷</u>.

Instructions to use this API

- 1. Available stations: Shows a world way indicating the different available stations that can be processed by the detection tool
- 2 Run the detection tool: The detection tool will provide an extract file with the significant bubbles detected at a certain time and leastion for the different carelines.
- Bubblecfolder Returns a congressed folder with the different bubbles gloss, logs and the corput file. Note that if you have not run Stop 2, Stop 2 will not return any glost or corput file.
- ¿ Posential Bubble plot: Generate plot for those general bubbles that have been previously identified in step 2. Note that if you have not nun Step 2, Step 6 will not return any plot.

Tool Aveilebility

The tools usual bits for a car of 50 656 methods block book and a glue draw yearnaling. Stations have been colocited in overhier of theorem introduces and ungitudee (goods) these latitudes does not be magnetic equator). It has also been dheded that these archine provide data with a low nominer of interruptions. However, it can not be encourted data and bits for a lithe range from 2006 to now data. For more information about data such data with a low reminer of interruptions. However, it can not be encourted data and bits for a lithe range from 2006 to now data. Such and how the note data and bits for all bits of the note data.

Notes

The detection tool processes GPS data from different ISS corners, becarding to the ISS data access mandards if, data are called from different corners.

Rines: file	Updat	ectample in	servalServer	Information
Broadcast ophomoric data (brdd)	bally	204	Cructal Dynamics Data Information System (OCDIS)	00bis #
Rinexfile per station	bally	204	Cructal Dynamics Data Information System (OCDIS)	00515 ¹⁰
Rinexfile per station	bally	20 4	European Space ágeney (ESá)	55A #
Rinexfile per station	bally	20 4	Institut National de l'information Geographique et Rerectione (IGN)	100 17
Rinexfile per station	bally	204	Wohan University	Wahan III
Rinexfile per station	bally	20 4	Bundecant für Kartographie und Geodade (BKG)	1000
Rinexfile per station	bally.	20 4	California Spatial Reference Center (CSRC)	C52C **
Rinexfile per station	bally	204	Korean Attronomy and Space Science Institute (KASI)	10.042 107
Rinexfile per station • Orbits files:	bally	204	EURSPPermanent GNSS Network(EURSP)	RUBBE ¹⁷

Final solutions: For orbit files (55 Final solutions are used (55 Final products (55) The (55 Final products have the highest guality and intermal conductions) of all (55 products. They are noted as tabled on a weekly lack, by each History with a delay up to 12 for the tar day of the weekly (50 for the fitted and the are products (45) The (55 Final products have the highest guality, and intermal conductions) day. The used (45) for the fitted are produced and the are produced are the highest guality. The area (15 Final products are the backfort the table are produced are intermediated for these applications down and ing high conductions) and guality.
 Regist conductions of Final conductions are provided. For more than of the fitted of the solid of the

Type AccuracyLatency Updatec Sample Interval

Ragid -2.5 cm 17 - 61 hourcast 17 UTC daily15 min Real -2.5 cm 12 - 19 days everyRiday 15 min

Soardh ondgoint bynamo

/Available stations

Showe the world may with the different available stations.

Show/Nido dotalic

/Run detection too

Collect catellite data and runcthe detection tool it returns the denificant kobblector each catellite. The execution may take a while 🗍 . You can go for a coffee if you want

<u>/Bubbles folder</u> It returns the glots for all the significant bubbles, output file and logs in a compressed folder

Show/Nido dotaile

/<u>Potential bubble plot</u> Greateca glot for all the bubblec that have been previoudy identified with the run detection tee

Show/Nido dotalle

Equatorial Plasma Detection (EPB_detectionTool)

/Available stations Shows the world map with the different available stations.

Show/hide details

• First endpoint Cancel Stations

Cancel No input required to run this API Run /STATIONS Clear Outputs

- Returns a ma^{outputs}
 stations fron day before y
- Issue with the map in the int

Equatorial Plasma Detection (EPB_detectionTool)

/Run detection tool

Collects satellite data and runs the detection tool. It returns the significant bubbles for each satellite. The execution may take a while 📀. You can go for a coffee if you want 😂

- Second endpoint: detection tool
 - Collects satellite data for a single station
 - Returns the significant bubbles for each satellite
 - Could take some time

Show/hide details	
Inputs	
Cancel	
Name Description	
year Insert a year in range (2009,2023)	
integer (query) 2023	
doy Insert a day of the year in range [1,366]	
integer (query) 50	
station Insert a station in the list	
string (query) glps ~	
Run /BUBBLES_RUN_DETECTION_TOOL/ Clear Outputs	
Outputs	
Download	
*** 7 BUBBLES DETECTED at STATION glps LAT -0.738 LON -90.304***	
**************************************	**
STBUTTICAUL BOBBLE 1	
PRN = 12	
t0 (s) = 9450 s	
tf (s) = 16050 s duration = 110.0 min	
depth_MAX = -51.067300514800486 TECU	
Time (s) Depth (TECU) Lat Lon	
9450 0.024805 0.0043 -91.7742 9480 0.013462 -0.0100 -91.7722	
9510 -0.026229 -0.0242 -91.7703	
9540 -0.078368 -0.0384 -91.7683	
9570 -0.127454 -0.0526 -91.7664	
9600 -0.157189 -0.0667 -91.7645	
9630 -0.189172 -0.0808 -91.7626	
9660 -0.235203 -0.0949 -91.7607	
9690 -0.278481 -0.1090 -91.7589	

APT.

Equatorial Plasma Detection

(ET /Bubbles folder

It returns the plots for all the significant bubbles, output file and logs in a compressed folder.

Show/hide details

• Third endpoint: bubbles folder

2	ZIP	FI	LE
(2023)	7:24		

2023050glpspotenti	23/08/2023 7:24	Archivo PN
2023050glpspotenti	23/08/2023 7:24	Archivo PN
2023050glpspotenti	23/08/2023 7:24	Archivo PN
2023050glpspotenti	23/08/2023 7:25	Archivo PN
2023050glpspotenti	23/08/2023 7:25	Archivo PN
2023050glpspotenti	23/08/2023 7:25	Archivo PN
2023050glpspotenti	23/08/2023 7:25	Archivo PN
bubbles_glps_20230	23/08/2023 7:25	Archivo de
🖉 bubbles_glps_20230	23/08/2023 7:25	Archivo TX

• Unrecognized zip file

Name I	Description
year l integer	nsert a year in range [2000,2023)
(query)	2023

Insert a day of the year in range [1,366] doy

integer

Inputs

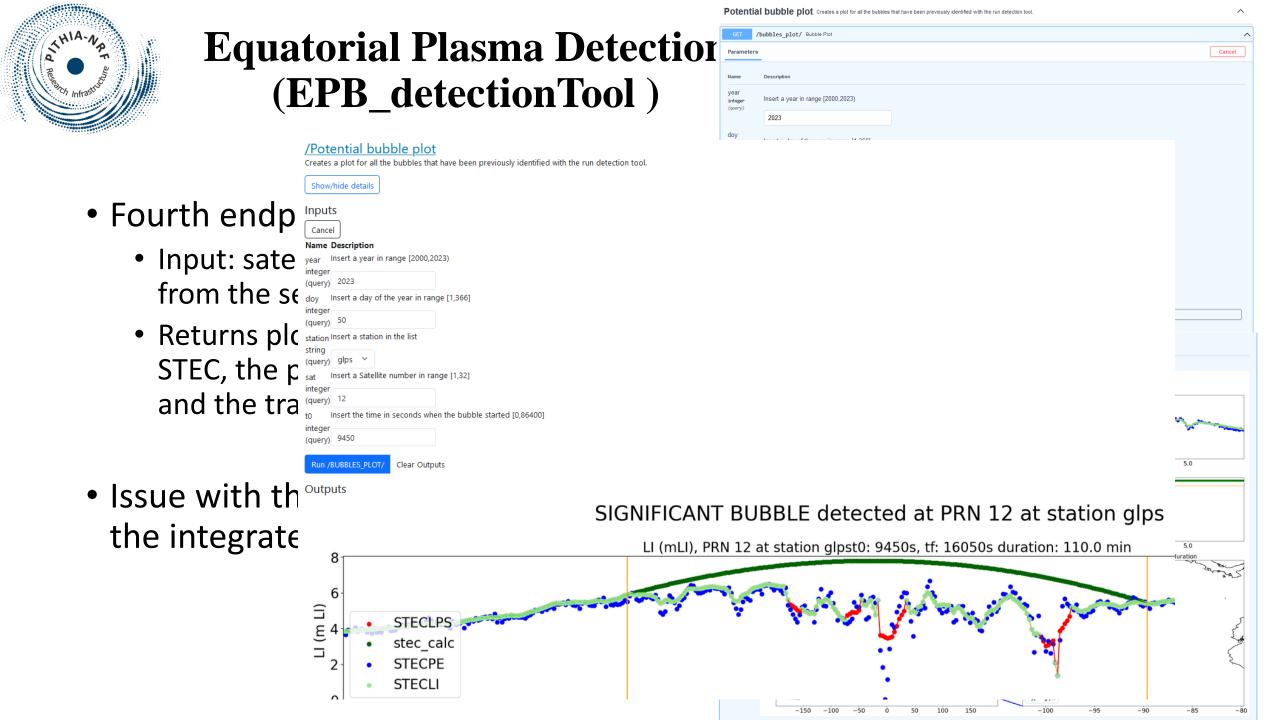
Cancel

(query) 50

station Insert a station in the list

string

(query) glps \sim


Run /BUBBLES_FOLDER/ Clear Outputs

Outputs

Unrecognized response type; unable to display.

	^
Cancel)
đ	
	-

 \sim

Conclusions

- B0B1_qModel and hmF2_qModel ready to keep only the integrated API
- EPB_detectionTool integrated API needs to be improved:
 - Figure size
 - Zip format
- How to deal with a large number of demands in the API?

Thank you for your attention!

WEB: <u>https://www.pithia-nrf.eu</u>

The PITHIA-NRF project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007599